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Movable Singularities and Quadrature * 

By R. F. Goodrich and F. Stenger 

Abstract. A general procedure is described for treating a movable singularity in an integral. 
This enables us to change the original integral IO into G1,, where G depends only on the pa- 
rameters of the singularity and I, is a new integral which exists for all values of the parameters. 
The results are then applied to the particular problem of evaluating 

f1 {(1 - 
f(x) dx 

,- ((I -X2Xl -k 2X2)J-I/2 

where f is entire and k varies between 0 and 1. Some new quadrature schemes and new effective 
methods of evaluating incomplete elliptic integrals are derived. 

1. Introduction. In obtaining numerical solutions to certain three-dimensional 
diffraction problems, we found it necessary to evaluate integrals of the form 

(1.1) 1(k) = F1 f(x) dx O k 1 (l. l) I~ = -J- {(1 - x2)(1 -k2X2)112 
? _ k < 1 

The result I(k) was to be subsequently integrated with respect to the parameter k, say, 

(1.2) J = I(k)g(k)dk, Q( [-1,1]. 

To perform the second quadrature in the cases in which Q includes the point k = 1, 
it is necessary to explicitly exhibit the logarithmic singularity of l(k) as k -* 1. 

For the particular form (1.1), this is readily done by noting that the transformation 

X ~~dt 
x = sn(u); u(x) = X {(I t2)(1 k2t2-11 2 

where sn(u) is the Jacobi elliptic function leads to 
(K(k) 

(1.3) I(k) = f(sn u) du, 
-K(k) 

where K(k) = u(1) is the elliptic integral of the first kind. In fact, on putting u = K(k)t, 
we have 

(1.4) I(k) = K(k) { f(sn Kt) dt. 
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This form (1.4) then explicitly manifests the singular function K(k) as a multiplicative 
factor, so that a logarithmic weight quadrature scheme can be used to evaluate (1.2). 

At this point, we were faced with the problem of evaluating the Jacobi elliptic 
functions for the modulus k near 1, or, alternately, finding another scheme for treating 
the singularity in (1.1). This problem has led us to study more general cases of the 
same type as (1.1). 

At the outset, in Section 2, we derive a simple error bound of quadrature which 
serves both as an intuitive guideline for obtaining the transformation, and as a tool 
by which we can quantitatively determine the effectiveness of a transformation. 

In Section 3, we give a general transformation of the integral. The transformation 
of the independent variable is defined as an integral (see (3.6)). In this form, it is pos- 
sible to deduce various properties of the transformation, although it is not generally 
possible to express the transformation or its inverse explicitly, both of which are 
eminently desirable in practice. It is expected, however, that in a number of instances 
in applications, it is worthwhile to compute the transformation and its inverse by a 
brute force technique. Whenever possible, we have tried to keep the proofs of Section 3 
constructive. 

The authors felt Section 3 to be important to numerical analysts, since this section 
exploits the connection between the region of analyticity of an integral and the rate 
of convergence of numerical quadrature, and, furthermore, this section leaves the 
numerical analyst with an intuitive approach towards choosing an effective trans- 
formation of the integral. In addition, he sees that transformations of the integral 
which remove the dominant effect of singularities exist in great profusion. 

A byproduct of the analysis of Section 3 is an explanation of why the classical WKB 
method is effective in the asymptotic solution of differential equations [16]. 

The reader who is interested only in the integral (1.1) may skip Section 3 and pro- 
ceed directly to Section 4. Here he finds various effective methods of evaluating (1.1), 
some new quadrature schemes, and some effective methods for evaluating elliptic 
integrals, together with error bounds. 

2. An Error Bound. Let En(g) be the error of a quadrature scheme, i.e. 

?1 n 
(2.1) En(g) = w(x)g(x) dx - I wjg(xj), 

- 1 j=l 

where w(x) is integrable over (-1, 1), the wi are weights, and the xj are points on the 
closed interval [- 1, 1], such that En(g) = O whenever g is a polynomial of degree p. 
Let g(z) be holomorphic in the ellipse &,p (of complex numbers z = x + iy) with foci 
at z = + 1 and sum of semiaxes equal to p, and let g(x) be real. Define 

1 n 
A = J w(x)l dx, B = E |wi, 

j=1 

(2.2) 
M(p) = sup IRe g(z)l. 

ZES 

Then we have 
THEOREM 2. 1. 

(2.3) E(g) 8(A + B) M(p) JO < 
7E P+ 
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Proof. The proof depends on a result of Achieser (see e.g. [ 17, p. 87], or [ 18, p. 309]). 
It is similar to the proof of Theorem 4 in [3] and is omitted here. 

The bound in (2.3) is minimized with respect to p by the Gaussian quadrature 
scheme, and is, in fact, 

(2.4) EM(g)p< ) 2n H P w(x) dx. 

We have assumed in (2.4) that w(x) > 0 in (-1, 1). 
We remark that if g(x) in (2.1) is not real when x is real the term pP+ in (2.3) is 

replaced by (p - l)pP. This is readily verified by expanding g(x) in a series of Cheby- 
shev polynomials (see Barnhill [19] for the details). 

3. The General Transformation. Let c be a vector in a domain C of complex num- 
bers in a finite-dimensional space. Let a = (a,, a2, ... , am) be fixed real numbers and 
let x1, x2, ..., xm be m complex numbers which may depend upon c. Let us define 

m 

(3.1) F(a, x) = r(x) Ht (x -X), 
i = 1 

where r(x) is an entire function. We shall assume that x -xi :# 0 for all (x, c) E 
(-1, 1) x C, and that the integral 

(3.2) { F(a, x) dx 

exists and is finite for all c E C. 
We consider evaluating the integral 

(3.3) f F(a, x)f(x) dx, 

where, for simplification of the developments of this section, we shall assume that 
f(x) is an entire function.** 

Quadrature schemes that are exact for polynomials of degree p are most extensively 
tabulated. Also inspection of (2.3) tells us that the larger the region in which g is 
analytic, the more rapidly the error of quadrature approaches zero as p -+ oc. In what 
follows, we shall, therefore, attempt to construct a transformation which reduces (3.3) 
to an integral of the form (2.1), and for which the resulting function g(x) is analytic 
in as large a domain as possible. Best results would be achieved in this respect by 
choosing 

w(x) = F(a, x) 

as a weight function and constructing a set of quadrature formulas with respect to 
this weight function. We could achieve this by constructing quadrature formulas for 
certain fixed values of the parameters and then obtaining formulas for intermediate 
values of the parameters by use of polynomial interpolation. While this procedure 
may be worthwhile, particularly in the case when it is necessary to evaluate (3.3) for 

**In practice, the functions f(x) and r(x) may have singularities in the finite plane, provided that these 
are far from the region of integration relative to those displayed in (3.1). 
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a large number of different functions f, in the present paper we study the use of a 
transformation, which we now describe. 

Let 2Ax be a path in the complex x-plane such that the segment of 9x joining - 1 
and 1 is a straight line such that the integral 

(3.4) { F(a, t) dt, 

taken along Bo, exists for each x on A, and such that the points x0, x1, ..., Xr are 
on 9, where x0 = 1. Let w(y) be a function defined for complex y and independent 
of c such that w(y) > 0 if -1 < y < 1. Here w(y) is any suitable weight function 
chosen by the user. Let oyY be a path in the complex y plane such that the segment of 
My joining - 1 and 1 is a straight line and such that the r + 1 distinct points {yi}= 0 
with yo = 1 are on bY. Let {hj(y)}J=o be a set of functions such that ho(t) = 1, such 
that hj(y) is real when y is real, such that each integral 

(3.5) Hij = w(t)hj 1(t) dt, (, j = 1, 2, ... , r + 1) 

taken along gy exists, and such that the square matrix [Hij] of order r + 1 is non- 
singular for all c E C, the closure of C, where Hij is the (i, j)th element of [Hij]. 

Note that bAx and My may depend continuously upon c E C, provided that the 
above conditions are satisfied. 

Let us put 

1 F(a, t) dt = { G(e, t) dt, 

(3.6) 

G(e, y) = (eo + E ejh3Cv)) w(y). 

In this equation the constants ej on the right are determined such that y = yj when 
x = Xj, j = 0, 1, ..., r. This may be explicitly carried out as follows. Let x denote 
the vector of order r + 1 with jth element equal to the left of (3.6) when x is replaced 
by xj1 l, and set*** e = (eo, . . ., er)T. Then, since [Hij] is nonsingular, the solution 
of [Hi]e = x uniquely determines e for all c E C. 

THEOREM 3.1. Let x = x(y) be determined by (3.6) as described above. This trans- 
formation reduces the integral (3.3) to the integral 

(3.7) Io= (e + E ejhj(y)) w(y)f(x(y)) dy 

Proof. The proof follows by direct substitution of (3.6) into (3.3). 
The constants ej in general depend on the parameters a1. Hence, if r > 0, (3.7) 

offers no advantage over (3.3), if we attempt to evaluate (3.7) using 

(eo + E ejhj(y) w(y) 

rev' denotes the transpose of the vector v. 



MOVABLE SINGULARITIES AND QUADRATURE 287 

as a weight function. We may, however, have gained over (3.3), if we either 
(i) replace (3.7) by r + 1 new integrals choosing hj_ 1(y)w(y) as a weight function 

in the ith. or 
(ii) choose w(y) as a weight function to evaluate (3.7). 
In order to minimize the bound (2.3), it is preferable in each of these cases that x(y) 

be an analytic function in as large a region as possible. In the cases (ii) we also want 
the function hj~y) to be analytic in as large a region as possible. 

Let &(x) and &(Y) be ellipses of complex numbers with foci at + 1 in the x and y 
planes respectively, such that for each ellipse the sum of its semiaxes is p, and such 
that x(y) is analytic for y E (Y). Let w = F(y) be a conformal map of &(Y) onto 
Iwi < 1, such that F(- 1) = 0. If we suppose that x(y) E &e(x) whenever y E& (P , 
Schwarz's Lemma (see e.g. [4]), applied to the function G(F(y)) = F(x(y)), yields 
IG(F(y))I < IF(Y)I for all y E &(Y). Since, moreover, g(F(1)) = F(1) Schwarz's Lemma 
yields G(F(y)) -F(y), from which x(y) -y. 

We have thus proved the following negative result: 
LEMMA 3.2. Let x(y) be analytic in (y). Unless x(y) -y, there exist points y E (Y 

such that x(y) 0 o(') 
Hence, if x(y) # y, then, given any positive number B, there exist entire functions 

f(t), such that 
sup If(y)j = B, while sup if(x(y))j > B. 

We have considerable freedom of choice in picking the weight function w(t). In 
practice, we would be apt to pick a weight function for which quadrature formulas 
are extensively tabulated. On the other hand, since the bound (2.3) can in general be 
made smaller when x(y) is analytic in a larger domain, picking a weight function w(t), 
for which quadrature formulas are tabulated, does not always yield the most rapidly 
converging quadrature scheme. 

By Lemma 3.2, the bound (2.3), applied to (3.7), in either case (i) or case (ii) above 
is in general minimal when x(y) =- y. Since the construction of high degree Gaussian 
quadrature formulas is no longer a formidable task (5), it is worthwhile to keep in 
mind the following result, the proof of which illustrates a construction of x(y): 

THEOREM 3.3. Corresponding to any positive number e, any compact subset U of the 
parameter domain C can be covered by a finite number of N neighborhoods Up, j = 
1, 2,..., N, such thatfor c E Uj there exists a function w(t) and a set offunctions hi.t) 
with the property that, if x(y) is defined by (3.6), then Ix(y) - yI < ?, -1 < y ? 1. 

Proof. The following proof of this theorem illustrates a construction of w(t) for the 
transformation (3.6). Let c0 be a point of S and let 5 > 0. Define Uj by 

(3.8) UJ {c E C: m c C2<a}. 
j=1 

Putting 

(3.9) w(t) = Fo(a, t) = F(a, t)C= C, 

we choose eo, el, ..., e, (r ? m) in (3.6), such that 

y = 1, when x = 1, 
(3.10) y = yi(c0), whenx = xi, i = 1, 2,..., r. 
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Here we assume that r > 0 is taken sufficiently small such that only integrable sin- 
gularities are included on each side of (3.10) and such that in (3.6) y = xi(co) is a 
singularity of the same type as x = xi. By our hypotheses on the independence of 
hj(t), the conditions (3.10) uniquely determine ej, j = 0, 1, . . ., r as continuous func- 
tions of c. When c = co, we have eo = 1 and ej = 0, j = 1, 2,. . ., r. Consequently, 
if 5 is chosen sufficiently small, ej can be made to differ by as little as we please from 
its value when c = co. Hence, if $ is sufficiently small the assertion of Theorem 2.2 
follows for c E Uj. That U can be covered by a finite number of the Uj is a conse- 
quence of the compactness of U. 

COROLLARY 3.4. If the integral on the left of(2.9) becomes unbounded as c approaches 
certain boundary points of C then at least one of the ej on the right of (3.6) becomes 
unbounded. 

Proof. That at least one of the ej's must become unbounded follows from the fact 
that 

|h#t)w(t) dt 

exists for all j = 0, 1, ...,r and for all c EC. 
We conclude this section with some additional remarks concerning the trans- 

formation (3.6). 
Remarks. 1. The resulting transformation is often analytic in a larger domain if 

the bi are chosen such that -1 < bi. This choice can always be made by use of the 
following identity: 

(3.11) f(x) --1 f(k)(1/u) ( -w F(x) 
(1 - ux)' kO k!(- u) \ U - + (1-ux) 

where u= Loi.t Given f(x), (3.11) defines F(x); further, with the exception of 
x = 1/u, the singularities of F(x) are of the same type as those of f(x), and F(x) is 
holomorphic wherever f(x) is holomorphic. 

2. In the notation of Theorem 2.2 it is often the case that relatively few sets Uj are 
required to cover U, particularly if instead of "nearness of x(y) to y" we require 
"analyticity of x(y) in some domain". This leads us to the following. 

THEOREM 3.5. Let x(y) be defined by (3.6) and let r(x) :# 0 for all finite complex x. 
Set x-1 = y-1 =- 1, X,,+ = ym+I = oc. Assume that for all cc C 

(a) x- xi implies y-+ y, i= -1, 1,...,m+ 1; 
(b) 

F(a, x) = (x -xi)'gi(x) 
(3.12) = -1,, l,..., m + 1, 

G(e, y) = (y yi)di hi(y), 

where gi(x) is analytic in a neighborhood of xi, gi(xi) # 0, hi(y) is analytic in a neighbor- 
hood of yi, hi(yi) # 0, and (di + 1)/(ai + 1) is a positive integer; 

(c) F and G have no singularities apart from those displayed in (3.12). 
Then x(y) is an entirefunction. 
Proof Let us examine the equation dx/dy = GIF. Under the assumptions of the 

tLw] is the greatest integer less than or equal to o. 
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theorem it follows that dx/dy exists at all points of the complex plane with the excep- 
tion of the singularities of F and G. Integration of F with respect to x and G with 
respect to y and inspection of x(y) in a neighborhood of Yi, shows that x(y) is analytic 
in a neighborhood of Yi. 

4. Examples. In this section we illustrate the developments of Sections 2 and 3 
with some examples. In Section 4.1 we give two examples illustrating that the theory 
of Section 3 does in fact include and extend well-known procedures. In Section 4.2 
we develop some formulas to evaluate the integral (1.1). 

4.1. Well-Known Examples. The example 

(4.1) *= T J( dx 

has been treated by Isaacson and Keller [13], where the singularity is removed by 
use of the transformation x = y2, or equivalently using our general procedure 

(X dt Ivy 
(4.2) j Ft = eo J dt, 

choosing eo such that y = 1 for x = 1. 
We next examine the integral 

(4.3) =x ife t) d o0 x < 1. 

The usual method of subtracting out the singularity in this integral is to write 

(4.4) I = f(1/x)ln(l - x) + x{ f(t) 
- f(l/x) d 

0 1 -xt 

for x near 1. Note that the integrand in the integral on the right is now entire and we 
may use Legendre-Gauss quadrature to evaluate it. Using an n-point Gaussian for- 
mula, we get the error bound 

(4.5) IE(f)I <16 f(l/x+ 1/2) (e/)2n; f(x) = ex. 
n ~~~~8n) 

On the other hand, putting 

(4.6) x i x = eo dT, 

and choosing eo such that y = 1 when t = 1, we obtain 

t= 1 -(1 -x)Y/x, eo = -ln(1 -x), 

(4.7) I = In(l - x) f - ( 
)dy. 

On evaluating 

(4.4') I f = { d- (1-x)Y)d 
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by n-point Legendre-Gauss quadrature, we get the error bound 

(4.8) En(f) < 16ex (x) = ex 1 > 0. n~f 7 L 4lIn2nx/f3j fx eij> 

Note that the function t = t(y) defined by (4.7) is an entire function of y. Note also 
that although the bound on the right of (4.5) approaches zero faster as n -. s than 
that given by (4.8), the form (4.4') has an advantage over (4.4) in the case when I is 
part of a repeated integral, and integration with respect to x is also requiredtt, since 
an effective numerical integration of (4.4) with respect to x requires two different pro- 
cedures, while the integration of (4.7) requires only one: Gaussian quadrature using 
log(1 - x) as a weight function. 

4.2. The Numerical Evaluation of 

(49) I = F f (x) dx 
J41 {(1 - x2)(1 k2X2)-1/2 

In this integral, k is a parameter such that 0 < k < 1. We shall assume that f(x) 
is an entire function, real when x is real. 

An effective method of evaluating (4.9) would be of considerable value because of 
the frequent occurrence of elliptic integrals in practice. The above problem arose in 
our attempt to evaluate a three-dimensional integral connected with the solution of 
the reduced wave equation (V2 + X2)U = 0 in three dimensions (2). In that case, 
I was an inner integral and k a function of two other variables. As it was necessary 
to integrate the result also with respect to these other variables, a knowledge of the 
type of singularity that I has as k -+ 1 was important. In evaluating (4.9), we wanted 
the number of evaluation points to be small, since the evaluation of I was an often 
used subroutine in a larger program. Also, it was necessary to compute I very accu- 
rately to within 10- relative error. 

In what follows, we illustrate several procedures for evaluating I. Some of these 
procedures are effective over the whole range of k, while others are effective only over 
apart of the range 0< k < 1. 

4.3. A Method for Small and Intermediate k. We apply Chebyshev quadrature to 
(4.9) in the form 

7r ~ [(2j - )7 (4.10) 1 = E F(xj) + En(F), Xi = cos L-2n 

where 

(4.11) F(x) = f(x)/(1 -k2X2)1/2 

On applying the error bound of Section 2 with f(x) = e4x, f > 0, we get 

IEn(F)<I < - 16efi/2 (4)fl- (L > k), or 

(4.12) 

/ 2ne '11 F k 
P2? <16 ( - ~k2)1I2) [i + (I - k j f2l, 0k<2 

consider the case when f(t) = f(t, x). 
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Thus, convergence is quite rapid when k is small. However when k is a function of 
other variables, and additional integrations are required with respect to these varia- 
bles, the above method has a disadvantage for k near 1 since it does not display the 
singularity of I as a function of k. 

4.4. A Method for Large k. In this section we use the procedure of Section 2 to 
develop a method suitable for k near 1. The method is, in fact, suitable for all k in 
the range 0 < k < 1, although the rate of convergence is not as rapid as that of 
some of the other methods for intermediate and small values of k. 

In view of (4.9), we have 

=1 F F(x) dx 
0 {( 1- x)(1 -kx)j 1/2 

(4.13) 

F~ - f x) + f (- x) 
F(x) = { ( 1 + x)(1 + kx)}" 2 

Thus, F(x) has a singularity at the point x = - 1; (since f(x) is assumed to be entire 
by our assumptions of Section 3) this is the nearest singularity of F(x) to the integra- 
tion segment [0, 1]. 

In (4.13) we put 

(4.14) . {(l-t)(1 kt)} 1/2 Y (l_ W/_2' 

choosing ai so that x = 0 when y = 0. We then obtain 

I (k( -x)) = c1(1 - sinh- ) 1 

(4.15) c = sinh In 1/2 

x = 1- ( - k)/k sinh 2[c(k( 1 -y))l2] 

With this transformation (4.13) becomes 

(4.16) I = ot f F(l( )) dy, 

here x(y) and a are given by (4.15). 
Note that x(y), defined in (4.15), is an entire function of y and also a one-to-one func- 

tion mapping 0 < y < 1 onto 0 ? x ? 1. Hence, the integral on the right of (4.16) 
exists for all values of k. The dominant portion of the singularity of (4.9) as a function 
of k is contained in ai, this being a particularly desirable feature from the point of 
view of repeated integration. 

The integral on the right of (4.16) can now be evaluated by use of Gaussian quadra- 
ture with 1/(1 _ y)112 as a weight function (see (4.1), (4.2)). Setting 

n 
(4.17) I = E wjF(x(yj)) + En(F), 

j= 1 

we obtain 



292 R. F. GOODRICH AND F. STENGER 

IEn(F) I < {( + k)(2-" YI)}12 (yo + (y2 - 1)1/2)-2n, 

(4.18) 

Yo = -1 ? 2(sinh 1(2k/(l - k)) 12 )2 

assuming again that If(x)l < e0lxl. The above bound is obtained again by use of 
(2.4) and minimization with respect to p. The bound on F used is jF(x)j < 2e#IxI/(1 + x), 
- 1 < x < 0. Under the transformation (4.15) the singularity at x = - 1 in (4.13) 
becomes a function of k and approaches the region of integration arbitrarily closely 
as k -- 1. Consequently, yo defined in (4.18) approaches 1 as k -* 1. Note however 
that E"(F) -* 0 as k -+ 1. 

4.5. A Method for Intermediate and Large k. Let us make the transformation 
x = x(y) in (4.9), where x(y) is determined from 

(4.19)___ 
dt_______+ f&2) dt 

(4.19) J {(1-t2)(1- k22)}2 {(1 -kot 

In (4.19) ko is fixed, and a and ft are determined such that 

(i) y = 1 when x = 1 
(4.20) 

(ii) y = 1/ko when x = 1/k, 0 < k, ko < 1. 

We thus attempt to match up the singularities as described in Section 3. Using the 
notations 

F(x,k) = J* x_ 
dt 

_ ___ 

(4.21) 

E(x, k) =J (Ak2 d 

together with 

F(1, k) = K, F(1, ko) = Ko 

E(1, k) = E, E(1, ko) EQ 

(4.22) k' = (1 - k2)1/2, F(1, k') = K', F(1, k') K'o 

E(, k') = E', E(1, k) =E 

F(1/k, k) = K + iK', E(1/k, k) = E -i(E' - K'), 

we find, on substituting (4.20) into (4.19), that x and / satisfy a simultaneous pair of 
linear equations whose determinant is 

(4.23) EOK'0 + E'K0 - K'K0 = /2, 

the Legendre relation. Thus, the conditions (4.20) uniquely determine a and /3 in 
(4.19), and we obtain 
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(4.24) F(x, k) = K F(y, ko) + - [KOK' - K'K] EK F(y, ko) - E(y, ko) (4.24) F~xK) K0 [K0 

or 

{K 2 [E0 
(4.24') x = sn -K F(y, ko) + - [KOK' -\K'K] F(y, ko) - E(y, ko)]}. (4.24') = Sn K0 [K0 

The integral (4.9) is thus transformed into the integral 

(4.25) = {(1 (1 + y2)F(x(y)) dy, 

where 

K 2 E_ 2k02 (4.26) a =- - (KOK'- K'K) , / = ? (KOK' -K'K), 
Ko ir Ko it 

and where x(y) is given by (4.24'). 
Let us check whether (4.24') is a one-to-one transformation. To this end we have 
LEMMA 4.1. For a given ko e (0, 1), the transformation (4.24) maps - 1 _ y < 1 

onto -1 X < 1 in a one-to-one manner if and only if k is such that 

(4.27) K > ____ -JE 
K' = K0E'0 - 7/ 

Proof. It is readily seen by use of (4.19) that (4.24) is one-to-one if and only if 
dy/dx > 0 a.e., which implies that both of the requirements (i) a _ 0 and (ii) 
(a + /1) ? 0 are satisfied. For if x < 0 we must have # > 0 in order to meet the 
first of (4.20); in this case x + /3y2 has a simple zero in (-1, 1). Similarly, if a = 0, 
then / > 0. Clearly a + / ? 0 implies that a + fly2 > 0, -1 ? <v ? 1, sincettt 
there is at most one y in (0, 1) such that a + fly' = 0. Consequently, if a + ft < 0 
then a + fy2 < 0 for IyI (IyI < 1) sufficiently near 1. The inequality a + ft ? 0 
yields 

(4.28) K[E' - k2Ko] + K'Eo - (I - k2)Ko > 0. 

Since 

r*K( 
(4.29) Eo- (1 - k)KO = ko f cn2u du, 

0 

where cn u(= cn(u, ko)) is defined by cn u = (1 - sn2u)"2, -Ko < u ? KO, it 
follows that Eo - (1 - k2)KO > 0 (>0) for all ko in 0 < ko < 1 (0 < ko < 1). 
Similarly, E' - k2K'0 > 0. Therefore, the only condition which may not be satisfied 
for all k in 0 ? k < 1 is the condition a ? 0. Using (4.26) we see that this condition 
is satisfied for all k such that (4.27) holds. 

For example, when ko = 1/\/2 (4.27) holds for all k such that 0.059 ... < k < 1. 
Similarly, we are able to deduce the behavior of x = x(v) defined by (4.24) when 

ttt I.e., from the above, since a _ 0 and jxj + 1#1 < 0. 
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y is complex by use of formulas in [7, pp. 12-13]. These formulas were used to obtain 
one of the graphs of Figure 1. Let ko = 1/1f/2 and let Up be defined as in Section 2. 
Then Figure 1 enables us to obtain for any given k in 0 < k < 1 the value of p with 
the property that x(y) is bounded if and only if y E Up . In Section 4.6 we shall describe 
a method of using this graph for obtaining error bounds. 

9 

8 

7 

6 

4 

3 

2 

0 . \ 
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

k 

FIGURE 1. In the approximation of ( w(y)F(y) dy by EJ= 1 wjF(yj) these graphs 
show Pm = maxfp: F(y) is analytic in ep} as a function of k. The following notation 
is used with reference to formulas in Section 3: (4.10); ? (4.17); x (4.33); V (4.39). 

Figure 2 is a table of zeros and weights for applying Gaussian quadrature to (4.25), 
with weight function 1/{(1 - y2)(1 - k2y2)}"/2 and with ko = 1/1/2. Gautschi's 
method [5] was used to obtain these formulas. 

4.6. A Method for all k. In this section we describe the transformation 

dx dt Y adt 
(4.30) Jo {,(1 - t2)(l- k 2t2)}1/2 = (_t21 

choosing a such that x = 1 when y = 1. We thus obtain a = 2K/it, and 

t2K . -1 
(4.31) x = sn(-2sin y), 

and (4.9) is transformed into the integral 
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FIGURE 2 

A Tabulation of Zeros and Weights for the formula (4.44). 

Xi wi 

n =2 

0.7369 21582 63652 1.854 07467 73012 

n =4 

0.3954 69781 80571 0.8425 64689 98211 
0.9301 23603 28663 1.0115 09987 3191 

n =6 

0.2649 51587 16405 0.5451 74977 20330 
0.7170 91637 67463 0.6099 34460 36376 
0.9680 02002 48077 0.6989 65239 73418 

n =8 

0.1986 21001 15531 0.4036 60738 26268 
0.5632 97934 36302 0.4324 38866 30620 
0.8372 28694 04480 0.4845 76717 20760 
0.9817 02539 55180 0.5333 98355 52475 

n= 10 

0.1587 15892 17121 0.3207 08661 04100 
0.4596 28626 03537 0.3357 07997 14341 
0.7131 04989 96760 0.3647 39149 50250 
0.8944 27331 04644 0.4019 89917 80663 
0.9881 69228 53536 0.4309 28951 80771 

n= 32 

0.0492 92858 71437 0.0986 84761 02046 
0.1473 94213 81454 0.0991 54111 01528 
0.2440 47560 36271 0.1000 94187 01064 
0.3383 04451 55721 0.1015 06874 34035 
0.4292 41652 76928 0.1033 92706 97865 
0.5159 70971 01291 0.1057 47763 89022 
0.5976 48818 41601 0.1085 58977 12039 
0.6734 85408 86576 0.1117 97486 80229 
0.7427 53450 03188 0.1154 09842 42554 
0.8047 96126 79396 0.1193 07377 72279 
0.8590 34069 81790 0.1233 55206 02390 
0.9049 70875 26986 0.1273 64117 31767 
0.9421 96641 28673 0.1310 90854 28518 
0.9703 89031 67376 0.1342 53453 52388 
0.9893 11727 28378 0.1365 66149 66189 
0.9988 10853 58111 0.1377 90808 16210 
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(4.32) = 2K f(sn((2K/ir)sin iy)) dy. 

This transformation was used also in [15], although no error bound was given in [15]. 
We evaluate the integral I by use of n-point Chebyshev quadrature to obtain 

(4.33) I = 2 L' Z f (sn (nf - 2] + 1)K) + En(f)j. 

We illustrate a method of obtaining a bound on En(f). 
We use the usual notation 

(4.34) q = e-K'/K 

for the nome q. The transformation x = sn[(2K/r)sin- y] maps the ellipse Sp in 
the y plane conformally [8] onto the circle Ixi ? 1/7/k, where p = q- 1/4. Thus by 
use of (2.4) we have 

(4.35) |E,(f)| < 16M*qn/2? 

where 

(4.36) M* = max IRe f(x)I. 
jxj!- 1/,1k 

Thus, for example, for the case | f(x)l < elxI, x complex and f(x) real when x is real, 
we have 

(4.37) |En(f )| < 16e'l> qn/ 

Comment. If we note that 

sn [2siniiyj = sn [2IK ln rl, 

where r = IYI + (Ky2! + 1)1/2, y real, then by minimization with respect to r and 
with I f (x)I e" I X I, as above, we get 

(4.38) |En(f )I < 16 exp ( K)qn, 

a bound which is usually smaller than (4.37), although not quite as simple to obtain. 
This observation has the advantage that it may also be used to obtain a bound on 
the error of the quadrature scheme developed in the previous section. For if (4.25) is 
evaluated by the formula 

1 a y2)F(x(y)) dy - 

(4.39) 1 {(1 =2)(1 - k2y2)}iI2 =E wj(a + /3y])F(x(yj)) + En(F), 

where the Wj and yj are obtained from Figure 2, we may obtain an estimate of En(F) 
as follows. We first determine p from Figure 1 and set q* = q(k*) = 1/p2. Corre- 
sponding to k* we find K* = K(k*) and then minimize 

32KO H + R (r 2) F- * [2iK ln rl r2n 
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with respect to r (1 ? r < 1/q* 12) to obtain an estimate on the bound of En(F), 
where F*[(2iK*/lr)ln r] bounds F[(2K*/nr)sin-1y] in the ellipse Sr (r = jyj + 
(1 + 1y2l)1/2 if y is imaginary). 

4.7. A Method of Computing Elliptic Integrals and Elliptic Functions. Two disad- 
vantages of the method in Section 3.5 are that it requires the computation of elliptic 
integrals and the elliptic function sn. The method of Section 3.5 also requires the com- 
putation of sn. We suggest computing sn u = sn(u, k) by use of the formula (see 
e.g. [9]) 

Z En-)(-n (n+212sin (2n + 1)iru 2 2K 
(4.40) sn u = Jk 1 + 2 

C 
I2oS niru 

where K can be computed by the method of Section 4.3 for moderate values of k and 
by the method of Section 3.4 for k near 1. We then use (4.34) to find q and (4.40) to 
find sn u. 

The methods developed in the previous sections also provide effective procedures 
for computing the elliptic integrals (4.21). Putting t = ux in (4.21), we obtain 

1 x du 
(4.41) F(x, k) = p {(1 X2U2)( k2X2U2)duX 
and 

(4.42) E(x, k) Jo (1 X2U2 1) du. 

We now make the transformation 

-~~~~~~~~~ f dT Y dt 
(4.43) .f (1 Xdt - , p dz 

choosing a so that u = 1 when y = 1. We then obtain 

(4.43') u = - sin 2- (sin- 1x)sin- ly 
x 7 

This transformation changes (4.41) and (4.42) into the integrals 

(4.41') F(x, k) =-si ~ sin (1 d 
1r 1- k2sin2 

2 
sin ix) sin-]1 1/2 Y ) 

and 
2 .f[ k 2i22 \'.~1/2 dy 

(4.42') E(x, k) =- sin sin I k'sn s -n y2-x i 

respectively. 
Both integrals (4.41') and (4.42') are now suitable for Chebyshev quadrature. On 

noting that each integrand in (4.41') and (4.42') is an even function of y, we may use an 
even number of evaluation points to obtain 
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(4.44) F(x, k) = _ 
x 

l/Mj(x, k) + En(F) 

and 
sin-1 Xn (4.45) E(x, k) = - A Mj(x, k) + En(E), 

n = 
where 

2 -2j 1) . 1 1/2 
(4.46) Mj{x, k) = (I - k2sin2 [X2 sin x 

Proceeding similarly as in Section 3.3, we obtain 

((14ne kn))"IE(F)1 IEn(E)I ? 16 1 + 1(1 -k2)1 

bounds which are uniformly valid for all x in -1 ? x ? 1. For example, when 
k = 1/1i2 we have the bounds 

n En(F) En(E), 

5 2.7 x 10-6 3.5x 10-7 

6 2.6 x 10-8 1.0 x 10-9. 

We expect that the above method compares favorably with that described in [10] 
and [14] or that described in [11, pp. 598-599]. 

The representation (4.40) converges slowly for k near 1. To find a representation 
of the Jacobi elliptic functions when k -+ 1, we observe that dn(u) = { 1- 2sn-2(u) 

1/2 
has the Fourier series representation 

r 00 
(4.48) dn(u) = - E sech(ina)eint, 

where 

(4.49) a = K'/K, t = u/K. 

Let F(t) be a continuous periodic function of period 2r with the representation 
00 

(4.50) F(t) = A f(t + 2irn), 
-0 

where f0 0 If(t)I dt < oro. Then 

(4.51) f(w) = { f(t)e - iwt dt 

is an interpolation of the Fourier coefficients of F(t), i.e. 

(4.52) f (n) = 2-{ F(t)e- t dt. 

Conversely, if F(t) is a continuous periodic function of period 27r which satisfies 
d-,r IF(t)I dt < oo, and if J(w) is a function such that Jo If!(w)I dw < oo and such 

that J(n) satisfies (4.52), then F(t) is represented by (4.50), where 
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00 
(4.53) f(t) = { (w)eiwt dw. 

- 0 

Upon setting dn(u) = F(t), then J(n) = (ir/2K)sech(nna), so that 

(4.54) f(w) = - sech(wxa) 2K 

is certainly an interpolation of the Fourier coefficients of dn(u). Upon applying the 
inverse Fourier transform (4.53), we get 

(4.55) 
f(t) 

= 

2K' 

sech(-). 
This then yields the representation 

(4.56) dn(u) = 2K' 2, sech (u + 2nK)1, 

which converges very rapidly when K is large, i.e., when k is near 1. 
The above method of obtaining (4.56) from (4.48) is believed to be new. Note that 

if lul < 1 then 

(4.57) dn(u) - 2K sech[ (u + 2nK)1 < 
7 

(1 - e-2KIK)- le-2(m+ I)KIK'. 
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